Aprendiendo ciencias con Profe. Gabriel

miércoles, 12 de octubre de 2022

TEMA 3: Experimentación con mezclas: • • Deduce métodos de separación de mezclas con base en las propiedades físicas de sus componentes.

 

TEMA 3: Experimentación con mezclas: • Homogéneas y heterogéneas. • Métodos de separación de mezclas con base en las propiedades físicas de sus componentes.

Aprendizaje esperado: Identifica los componentes de las mezclas y las clasifica en homogéneas y heterogéneas. • Identifica la relación entre la variación de la concentración de una mezcla (porcentaje en masa y volumen) y sus propiedades. • Deduce métodos de separación de mezclas con base en las propiedades físicas de sus componentes.

En química, una mezcla es la combinación de dos o más sustancias puras que se juntan sin cambiar químicamente. Por esta razón, es posible separar a los componentes de las mezclas mediante ciertos procedimientos físicos, como la filtración o la destilación. Por ejemplo: agua y arena, café con azúcar, aceite en agua.

Una mezcla se compone por una o más sustancias en composición variable. Hay dos tipos de mezclas: heterogéneas y homogéneas. Las mezclas heterogéneas tienen componentes que se distinguen a simple vista, mientras que las mezclas homogéneas parecen ser completamente uniforme.

Las mezclas se clasifican atendiendo a qué tan factible sea identificar a simple vista sus distintos componentes.

  • Las mezclas homogéneas. Son aquellas en que los componentes no pueden distinguirse. Se conocen también como soluciones, y se conforman por un solvente y uno o varios solutos. Y como hemos dicho, las fases son imposibles de identificar a simple vista.
  • Las mezclas heterogéneas. Son aquellas en que los componentes pueden distinguirse con facilidad, debido a que poseen una composición no uniforme, o sea, sus fases se integran de manera desigual e irregular, y por eso es posible distinguir sus fases con relativa facilidad. Dependiendo del tamaño de las partículas de sus componentes, podemos hablar de dos tipos de mezclas heterogéneas:
  • Mezclas gruesas o dispersiones gruesas. Son aquellas en las que el tamaño de las partículas es apreciable a simple vista.
  • Suspensiones o coloidesSon aquellas en las que una fase es normalmente fluida (gaseosa o líquida) y la otra está compuesta por partículas (generalmente sólidas) que quedan suspendidas y se depositan al pasar el tiempo.
  • Ejemplos de mezclas homogéneas

    Muchas bebidas alcóhólicas son mezclas homogéneas. ejemplos de mezclas homogéneas:
    • El aire. El gas común que respiramos a diario, es una mezcla de sustancias puras gaseosas (como oxígeno, nitrógeno y argón, entre otras más) que son imposibles de percibir a simple vista y que, en conjunto, suelen ser inodoras.
    • Las bebidas alcohólicas. Como los cócteles, consisten en dos o más líquidos (o incluso sólidos) mezclados hasta adquirir una apariencia uniforme y, aunque podamos saborear sus integrantes, no podríamos señalarlos a simple vista.
    • El agua con azúcar. Que solemos darle a las personas que se descompensan, es una dilución de un sólido (azúcar) en un líquido (agua), al punto tal de que no puede apreciarse la diferencia.
    • Las aleaciones metálicas. Como el acero inoxidable del que están hechos algunos cuchillos, se obtienen mezclando el hierro con carbono y otros componentes metálicos, para que la mezcla adquiera la combinación de sus propiedades. Para ello se los debe fundir hasta el estado líquido, luego mezclarlos y dejarlos solidificar.
    • Las amalgamas. Tal como las usaba antiguamente el dentista, solían ser una mezcla de mercurio y algún otro metal, convertidos en una pasta uniforme y maleable, que luego endurecía al solidificar.
    • La espuma de afeitar. Es una mezcla de agua, jabones, glicerina y mentol, a menudo acompañada de gases (si viene en spray).
    • La sangre. Es también una mezcla homogénea de un número inmenso de compuestos líquidos, sólidos y gaseosos, que apreciamos simplemente como un líquido rojo más o menos espeso.

    Ejemplos de mezclas heterogéneas

    La pintura en aerosol es una mezcla de líquido y gas. Ejemplos de mezclas heterogéneas:
    • Los aerosoles. Como los desodorantes o la pintura en spray, se componen de una mezcla de líquido y gas, que son eyectados del envase al mismo tiempo, pero que luego el gas se dispersa y el líquido queda sobre la superficie rociada. Se trata de una mezcla coloidal.
    • La grava o gravilla. Es una mezcla de dos o más tipos de piedra en pedazos pequeños, que pueden distinguirse a simple vista. Es un caso de dispersión gruesa.
    • Una ensalada. Es otro perfecto ejemplo de dispersión gruesa, ya que podemos apreciar cada uno de sus componentes a simple vista pero funcionan todos en conjunto: vegetales, aceite, frutos, a veces carnes, etc.
    • El agua y aceite. Es también un ejemplo de mezcla heterogénea en la que podemos identificar ambas fases, aunque en este caso se trata de una suspensión líquido-líquido.
    • Algunos medicamentos. En cuyos empaques se nos sugiere que los agitemos antes de usar, son casos de suspensiones en las que el sólido se precipita al fondo con el tiempo, y por eso debemos agitarlo para que vuelva a disolverse, haciéndose temporalmente inapreciable la distinción entre uno y otro.
    • El hormigón. Es una mezcla de agua, arena y cemento en proporciones específicas que, una vez solidificada y desecada, adquiere su dureza y uniformidad.

    Sustancias puras

    Las sustancias puras son aquellas que no son el resultado de una mezcla, sino que están compuestas por una única fase y, por lo tanto, no pueden ser separadas en sus componentes mediante métodos físicos. Además, presentan una composición química estable y son químicamente uniformes.

    Una sustancia pura no necesariamente tiene que estar compuesta por un único tipo de elemento químico. Las sustancias puras pueden clasificarse en:

    • Sustancias simples. Son aquellas compuestas por un único tipo de elemento químico (lo cual no quiere decir que estén compuestas por un solo átomo). Por ejemplo: el oxígeno (O2), el níquel (Ni).
    • Sustancias compuestas. Son aquellas compuestas por más de un tipo de elemento químico. Por ejemplo: el agua (H2O), el dióxido de carbono (CO2).

    La única forma de separar los elementos de una sustancia pura es utilizando métodos químicos, es decir, transformándola en otras sustancias o directamente en sus elementos químicos.

    Es necesario aclarar que la pureza absoluta no existe. En el mundo en que vivimos las sustancias existen en la naturaleza en forma de ciertas mezclas, o dicho de otra manera, con cierto nivel de impurezas. No obstante, las impurezas se pueden separar hasta lograr el grado de pureza deseado o permitido de la sustancia.

    Ejemplos de sustancias puras: cobre (Cu), plata (Ag), oro (Au), glucosa (C6H12O6), oxígeno (O2), agua (H2O).

    ¿Qué es una disolución?

    Una disolución es una mezcla homogénea formada por dos o más sustancias puras que no reaccionan químicamente entre sí. Una de estas sustancias es el disolvente y la otra (o las otras) es el soluto. La distinción entre soluto y solvente es un poco arbitraria, pero por lo general se toma el soluto como el componente que está en menor cantidad y el solvente como el componente que está en mayor cantidad en la disolución.

    Loaded7.52%
    Remaining Time 8:07
    Cuando se forma una disolución, el soluto (minoritario) pasa a formar parte del solvente (mayoritario) en la disolución, modificando así las propiedades físicas de cada componente puro por separado, como el punto de ebullición o congelación, pero sin alterar las propiedades químicas de cada uno.

    El resultado obtenido, de hecho, depende en gran medida de la concentración de soluto y especialmente de su coeficiente de solubilidad (cantidad necesaria de una sustancia para saturar cierta cantidad de solvente) en el solvente (algunas sustancias se disuelven mejor en otras).

    Las disoluciones se clasifican según el estado de agregación de sus componentes, en:

    • Cuando el soluto y el disolvente son sólidos. Disoluciones de sólido en sólido. Las aleaciones son un ejemplo de este tipo de disolución. Por ejemplo: el bronce es una aleación de cobre (Cu) y estaño (Sn).
    • Cuando el soluto es un sólido y el disolvente es un líquido. Disoluciones de sólido en líquido. Son probablemente las más empleadas en todas las ramas de la química y otros rubros. Por ejemplo: una disolución de agua con sal.
    • Cuando el soluto es un sólido y el disolvente es un gas. Disoluciones de sólido en gas. Por ejemplo: el polvo disuelto en el aire.
    • Cuando el soluto es un líquido y el disolvente es un sólido. Disoluciones de líquido en sólido. Por ejemplo: las amalgamas son una disolución de mercurio líquido y plata sólida, o mercurio y otros metales.
    • Cuando el soluto es un líquido y el disolvente es un líquido. Disoluciones de líquido en líquido. Son también muy empleadas en todos los rubros de la química, la medicina y la industria en general. Por ejemplo, una disolución de etanol en agua.
    • Cuando el soluto es un líquido y el disolvente es un gas. Disoluciones de líquido en gas. Por ejemplo: el aire o algún otro gas húmedo.
    • Cuando el soluto es un gas y el disolvente es un sólido. Disolución de un gas en sólido. Por ejemplo: disolución de hidrógeno en algunos metales.
    • Cuando el soluto es un gas y el disolvente es un líquido. Disolución de un gas en líquido. Por ejemplo: el oxígeno disuelto en agua, que permite la respiración de los peces.
    • Cuando el soluto es un gas y el disolvente es un gas. Disolución de un gas en gas. Por ejemplo: el gas natural es una disolución gaseosa de metano, etano, propano, butano, dióxido de carbono y otros gases en pequeñas proporciones.

    Las disoluciones tienen dos componentes diferentes:

    • Disolvente. El disolvente es la sustancia en la que se disuelve el soluto, generalmente es la más predominante. También se le conoce como solvente, dispersante o medio de dispersión.
    • Soluto(s). En este caso hablamos de la sustancia que es disuelta por el disolvente. Una misma disolución puede tener más de un soluto disuelto en en el mismo disolvente. El soluto se encuentra en menor cantidad que el disolvente.

    Propiedades de una disolución

    Los componentes de una disolución no pueden ser reconocidos a simple vista. Tampoco pueden ser separados por centrifugación, ni filtración, sino por métodos fraccionarios de separación de fases, como son la evaporación, la destilación o la cristalización.

    Esto se debe a que se trata de una mezcla homogénea, en la que no se dan reacciones químicas, pero sí se obtiene un resultado distinto en apariencia y propiedades físicas a sus sustancias antecesoras.

    Su comportamiento físico es distinto al de sus componentes por separado pero, por el contrario, dejan sin alterar las propiedades químicas de cada uno.

    Tal como en otras mezclas, podemos también obtener diversos tipos de disoluciones (y con ellas, distintos comportamientos) a través de la concentración final del soluto en el solvente, pudiendo así hablar de:

    • Disoluciones diluidas. Poco soluto en la misma cantidad de disolvente.
    • Disoluciones concentradas. Abundante soluto en la misma cantidad de disolvente.
    • Disoluciones saturadas. Logran el equilibrio entre soluto y disolvente, sin que se pueda añadir más soluto, al menos en ciertas condiciones dadas de temperatura y presión.
    • Disoluciones sobresaturadas. Son disoluciones que contienen más soluto del que tendría la disolución saturada a cierta temperatura y presión. Si se aumenta la temperatura de una disolución saturada, es posible agregar más soluto, pero si se deja enfriar lentamente, se puede transformar en una disolución sobresaturada.

    ¿Qué es compuesto?

    En química se llama compuesto a una sustancia que está formada por dos o más elementos de la tabla periódica. La palabra compuesto proviene del latín composĭtus. Podemos hablar de que algo está “compuesto de” para señalar qué cosas conforman algo.

    Los compuestos químicos tienen una fórmula química. Un compuesto químico está conformado por moléculas o iones que están enlazados de forma estable. Los elementos químicos que conforman un compuesto químico no pueden separarse con ningún tratamiento o proceso físico, sino solo con algún método químico.

    No debe confundirse un compuesto químico con una mezcla (material formado por dos o más componentes no combinados químicamente) o una aleación (mezcla de dos o más componentes donde al menos uno es un metal). Los componentes de una mezcla o de una aleación se pueden separar utilizando métodos físicos de separación como la filtración, la destilación, la decantación y la evaporación.

    Loaded16.79%
    Remaining Time 7:45


    Los métodos de separación de mezclas son aquellos procesos físicos por los cuales se pueden separar las mezclas. Por lo general, el método a utilizar se define de acuerdo a los tipos de componentes de la mezcla y a las propiedades esenciales, así como las preferencias más importantes entre las fases.

    Evaporación: Es un método físico que permite separar un sólido de un líquido en una mezcla homogénea. Se basa en que el punto de fusión del sólido es mayor al punto de ebullición del líquido. Se utiliza cuando no hay interés en el líquido que se evapora, ya que este no se recupera, pasa a formar parte del medio. Esta operación se emplea para separar la sal del agua de mar en las salinas. El agua de mar almacenada en tanques abiertos se evapora poco a poco por los rayos de sol.

    Cristalización. Este método se utiliza para separar una mezcla de un sólido en un líquido. La mezcla se calienta para evaporar parte del disolvente. Posteriormente se deja enfriar la mezcla y el soluto se precipita formando cristales. Se utiliza para separar el azúcar del agua en una disolución azucarada. No se puede separar por evaporación, ya que el punto de fusión del azúcar es menor al punto de ebullición del agua y lo que se obtiene es un caramelo y no la separación de separación de las sustancias puras.

    Destilación. Este método consiste en separar dos o más líquidos miscibles con diferentes puntos de ebullición, primero por medio de la evaporación posteriormente por la condensación de las sustancias. A través de esta operación se separan principalmente mezclas homogéneas de líquidos. Este método se utiliza para separar a las diferentes fracciones del petróleo. Por este procedimiento también puede separarse una mezcla de un sólido en un líquido, con la ventaja de que se pueden recuperar tanto el líquido como el sólido, a diferencia de la evaporación.

    Cromatografía. Este método depende de la distribución de los componentes de la mezcla entre dos fases inmiscibles. Una fase móvil, llamada activa, que transporta las sustancias que se separaron y que progresa en relación con otra, denominada fase estacionaria. Por ejemplo, por esta técnica se pueden separar los componentes de la tinta de pluma o de un plumón..

    Sedimentación. Es una operación basada en la diferencia de densidades de los componentes de la mezcla, que permite separar mezclas heterogéneas de un sólido en un líquido mediante reposo o precipitación. Es el paso previo a la decantación. Se usa, por ejemplo, para separar arena de agua. Se deja reposar y las partículas más grades de arena se van al fondo del recipiente (precipitan), es a lo que se le llama sedimento.

    Decantación. Se utiliza para separar dos líquidos con diferentes densidades o una mezcla constituida por un sólido insoluble en un líquido. Se trata de un método basado en la diferencia por densidades. Si tenemos una mezcla de sólido y un líquido que no disuelve dicho sólido, se deja reposar la mezcla y el sólido se va al fondo del recipiente. Si se trata de dos líquidos se coloca la mezcla en un embudo de decantación, se deja reposar y el líquido más denso queda en la parte inferior del embudo.

    Filtración. Se trata de una operación que permite separar mezclas heterogéneas de un sólido insoluble en un líquido. Se hace pasar la mezcla a través de un papel filtro, el sólido se quedará en la superficie del papel y el otro componente pasará. Es posible separar sólidos de partículas sumamente pequeñas. Utilizando papeles con el tamaño de los poros adecuados. Es uno de los métodos más simples de separación física, además de ser sencillo y barato. Seguramente lo has usado, al colar en la cocina algún elemento.

    Centrifugación. Se trata de una operación que consiste en la separación de materiales de diferentes densidades que componen una mezcla. Para eso se coloca la mezcla dentro de un aparato llamado centrífuga que tiene un movimiento de rotación constante y rápido, lo cual hace que las partículas de mayor densidad vayan al fondo y las más livianas queden en la parte superior. Observamos un ejemplo en las lavadoras automáticas o semiautomáticas. Este método se usa con frecuencia en Biología y Medicina para separar la grasa de la leche o el suero de los glóbulos rojos y plaquetas de la sangre.

    Imantación. Consiste en separar con un imán los componentes de una mezcla de un material magnético y otro que no lo es. La separación se hace pasando el imán a través de la mezcla para que el material magnético se adhiera a él. Por ejemplo, separar las limaduras de hierro (magnético) que se hallen mezcladas con azufre en polvo (no magnético), para lo cual basta con mantener con un imán el componente magnético.

     


    jueves, 29 de septiembre de 2022

    Lectura para contestar la actividad de la pág 8 del cuadernillo. ciencias 3.

     

     

    ¿Qué son los estados de agregación de la materia?

    Una propiedad física es cualquier propiedad que es medible, usualmente se asume que el conjunto de propiedades físicas define el estado de un sistema físico. Los cambios en las propiedades físicas de un sistema describen sus transformaciones y su evolución temporal entre estados instantáneos. Las propiedades físicas a veces se denominan observables. Podemos definir las propiedades físicas de un objeto mediante la observación y la medición. Por ejemplo, las propiedades físicas de un cubo de madera serían: denso, sólido, cuadrado, de madera, orgánico, no maleable, etc.

    Las propiedades físicas constantemente se clasifican en propiedades intensivas y extensivas. Una propiedad intensiva no depende del tamaño de la extensión del sistema, o de la cantidad de material del sistema, mientras que una propiedad extensiva exhibe un comportamiento agregativo o aditivo. Estas clasificaciones sólo pueden mantenerse válidas cuando las subdivisiones más pequeñas de la muestra no interaccionan entre sí en un determinado proceso físico o químico. Las propiedades también pueden ser clasificadas respecto a su distribución geométrica en homogéneas y heterogéneas.



    ¿Qué son las propiedades generales de la materia?

    Cuando hablamos de las propiedades generales de la materia nos referimos al conjunto de características o cualidades físicas que posee la materia, que está compuesta por alguna (o más de una) sustancia. Esto significa que todo lo que existe y que podemos tocar o percibir está hecho de materia en alguno de sus cuatro estados de agregación: sólidoslíquidosgases y plasmas.

    A pesar de estar compuesta a menudo por distintos elementos químicos en distintas proporciones, la materia existe de manera homogénea (no se distinguen a simple vista sus elementos) o heterogénea (se perciben fácilmente sus elementos). Y dependiendo de su composición, variarán también sus propiedades físicas y químicas.

    Propiedades extrínsecas o generales. Son aquellas características que comparte absolutamente toda la materia, sin distinción de su composición, forma, presentación o elementos constitutivos. Las propiedades generales no permiten diferenciar una sustancia de otra. Algunas propiedades extrínsecas son la masa, el volumen, el peso y la temperatura.

    Masa: La masa de los objetos es la cantidad de materia que hay congregada en ellos, es decir, la cantidad de materia que los compone. La masa se determina mediante la inercia que presenten o la aceleración que presente una fuerza actuando sobre ellos, y se mide en el Sistema Internacional con unidades de masa, como los gramos (g) o kilogramos (kg). No debe confundirse la masa con el peso (que es una magnitud vectorial, medida en Newtons), ni con la cantidad de sustancia (que se mide en moles).

    Peso: El peso es la medida de la fuerza que ejerce la gravedad sobre los objetos. Se mide en Newtons (N) en el Sistema Internacional, porque se trata de una fuerza que ejerce el planeta sobre la materia, y es una magnitud vectorial, dotada de sentido y dirección. El peso de un cuerpo depende solo de su masa y de la intensidad del campo gravitacional al cual esté sometido.

    Elasticidad: Esta propiedad permite a los cuerpos recuperar su forma original (memoria de forma) luego de haber sido sometidos a una fuerza externa que los obligara a perderla (deformación elástica). Es una propiedad que permite distinguir entre los elementos elásticos y los frágiles, es decir, entre los que recuperan su forma una vez eliminada la fuerza externa y aquellos que se fracturan en pedazos más pequeños.

    Inercia: La inercia es la resistencia de la materia a modificar la dinámica de sus partículas frente a una fuerza externa. Es la propiedad de los cuerpos de permanecer en reposo relativo o mantener su movimiento relativo cuando no hay una fuerza externa que actúe sobre ellos. Existen dos tipos de inercia: la mecánica, que depende de la cantidad de masa, y la térmica, que depende de la capacidad calorífica y la conductividad térmica.

    Volumen: El volumen es una magnitud escalar que refleja la cantidad de espacio tridimensional que ocupa un cuerpo. Se mide en el Sistema Internacional mediante metros cúbicos (m3) y se calcula multiplicando la longitud de un objeto, el ancho y su altura.

    Dureza: La dureza es la resistencia que ejerce la materia frente a alteraciones físicas como el rayado, la abrasión o la penetración. Depende de la fuerza de unión de sus partículas. Así, los materiales duros tienden a ser impenetrables e inmodificables, mientras que los blandos pueden deformarse con facilidad.

    Densidad: La densidad alude a la cantidad de materia presente en un material, pero también a qué tan juntas se encuentran sus partículas. Por eso, se la define como la masa dividido el volumen que ocupa esa masa. Los materiales densos son impenetrables y poco porosos, mientras que los poco densos pueden ser atravesados con facilidad porque hay espacios abiertos entre sus moléculas. La unidad estándar de medición de la densidad es de peso por volumen, es decir, kilogramos sobre metro cúbico (kg/m3).

    PROPIEDADES ESPECIFICAS DE LA MATERIA

    Las propiedades específicas de la materia, son aquellas propiedades que caracterizan a una sustancia y que la hace diferente de las demás. Por la forma en que se comportan los cuerpos frente a fuerzas que se le aplican, se clasifican en cuatro grupos llamados estados de agregación o estados físicos. Todas las sustancias se pueden presentar en los cuatro estados de agregación dependiendo de las condiciones de presión y temperatura a que se encuentren.

    ESTADO SOLIDÓ: Presentan el estado solidó aquellos cuerpos que tienen forma y volumen definido o propio, resisten a los agentes que tienden a cambiar su forma y volumen, debido a que entre sus moléculas existe una gran fuerza de atracción.

    ESTADO LÍQUIDO: Presentan el estado líquido aquellos cuerpos que tienen volumen propio o definido, que adoptan la forma del recipiente que los contiene, resisten a los agentes que tienden a cambiar su volumen, pero no así a los agentes que tienden a cambiar su forma, esto debido a que la fuerza de atracción y fuerza de repulsión entre moléculas son muy parecidas.

    ESTADO GASEOSO: Presentan el estado gaseoso, aquellos cuerpos que toman la forma y volumen del recipiente que los contiene, por lo mismo no resisten a los agentes que cambian su forma y volumen, esto se debe a que la fuerza de atracción entre sus moléculas es muy pequeña en comparación a su fuerza de repulsión.

     ESTADO PLASMA: Es la menos común para la experiencia cotidiana, puede considerarse como el estado normal de la materia en el universo, el sol, las estrellas y materia intergaláctica, si el vapor se calienta a temperaturas superiores a 2000oC los átomos se disocian formando un gas de electrones libres y núcleos puros llamados PLASMA.

    DENSIDAD ABSOLUTA o MASA ESPECIFICA: La densidad de un material se define como la cantidad de masa por unidad de volumen, por lo que se cuantifica por el cociente que resulta entre la masa y el volumen del cuerpo.



     Propiedades físicas de la materia

    Las propiedades físicas de la materia son las características visibles y propias de una sustancia que pueden ser medidas y no producen nuevas sustancias químicas. Algunas de las propiedades físicas que podemos encontrar son, por ejemplo:

    • Estado físico: sólido líquido, gaseoso o plasma (estados de la materia)
    • Olor: fragante, frutal, químico, mentolado, dulce, leñoso, podrido, cítrico, etc.
    • Sabor: salado, ácido, amargo, dulce, picante.
    • Densidad: relación entre masa y volumen.
    • Viscosidad: resistencia en la fluidez de un líquido.
    • Maleabilidad: flexibilidad.
    • Temperatura de ebullición: temperatura necesaria para que lo líquido se vuelva gaseoso.
    • Punto de fusión: temperatura necesaria para que los sólidos se fundan y los líquidos se solidifiquen.
    • Conductividad: capacidad de conducir algún tipo de energía.
    • Solubilidad: capacidad de una sustancia de disolverse en otra, etc.

     Cambios de estado de la materia.

    Los cambios de estado que se dan entre estos son: vaporización, fusión, solidificación, sublimación, sublimación inversa, ionización y des ionización.

    Los procedimientos de transformación de las fases de la materia suelen ser reversibles y los más conocidos son los siguientes:

    • EvaporaciónEs el proceso mediante el cual, introduciendo energía calórica (calor), parte de la masa de un líquido (no necesariamente la totalidad de la masa) se transforma en gas.
    • Ebullición o vaporizaciónEs el proceso mediante el cual, suministrando energía calórica, la totalidad de masa de un líquido se transforma en un gas. La transición de fase ocurre cuando la temperatura supera el punto de ebullición (temperatura a la cual la presión del vapor del líquido se iguala a la presión que rodea al líquido, por tanto, se convierte en vapor) del líquido.
    • Condensación. Es el proceso mediante el cual, retirando energía calórica, un gas se transforma en un líquido. Este proceso es contrario a la vaporización.
    • Licuefacción. Es el proceso mediante el cual, aumentando mucho la presión, un gas se transforma en un líquido. En este proceso, el gas también se somete a bajas temperaturas, pero lo que lo caracteriza es la elevada presión a que es sometido el gas.
    • SolidificaciónEs el proceso mediante el cual, aumentando la presión, un líquido puede transformarse en sólido.
    • Congelación. Es el proceso mediante el cual, retirando energía calórica, un líquido se transforma en sólido. La transición de fase ocurre cuando la temperatura toma valores menores que el punto de congelación del líquido (temperatura a la cual el líquido se solidifica).
    • FusiónEs el proceso mediante el cual, suministrando energía calórica (calor), un sólido puede transformarse en líquido.
    • Sublimación. Es el proceso mediante el cual, suministrando calor, un sólido se transforma en gas, sin pasar antes por el estado líquido.
    • Deposición o sublimación inversaEs el proceso mediante el cual, retirando calor, un gas se transforma en sólido, sin pasar antes por el estado líquido.

     Midiendo nuestro entorno

    Aprendizajes Esperado: • Explica la importancia de los instrumentos de medición y observación como herramientas que amplían la capacidad de percepción de nuestros sentidos.

    ¿Qué es medir?

    La palabra medir hace referencia al acto de comparar una cantidad determinada de algo con una unidad de medida, en donde se establece cuántas veces esta unidad ocupa un lugar dentro de dicha cantidad.

    Definición de medir: Determinar la longitudvolumen, extensión, o capacidad de una cosa por comparación con una unidad de medida establecida que es utilizada como referencia, usualmente mediante algún instrumento graduado con dicha unidad.

    Magnitudes fundamentales: Son aquellas que se miden directamente, con la longitud, la masa y el tiempo.

    Magnitudes derivadas: Dependen de las fundamentales: área, volumen densidad, velocidad, etc.

    Patrón: Es una base fija de comparación establecida de manera arbitraria y representa el tamaño de una unidad de medición. El patrón para medir longitudes o distancias es el metro; para la masa, el kilogramo; para el tiempo el segundo

    ¿Qué son las medidas de peso?

    Las medidas de peso son las unidades empleadas convencionalmente para calcular el peso de un cuerpo, es decir, la cantidad de materia que hay en él. Aunque más comúnmente se conozca a esta magnitud como «peso», en realidad hablamos de masa; ya que el primero será la medida en que, bajo la acción de la gravedad, el objeto imprima una fuerza sobre la superficie en que repose y, por lo tanto, se mide en Newtons (N).

    La masa, en cambio, responde a la cantidad de materia de un objeto y para medirla se emplean las medidas convencionales de gramo (g) y kilogramo (kg), entre otras. La medida de peso a usar, en todo caso, dependerá de muchas variables científicas y culturales, de modo que en algunas naciones se emplea un sistema y en otras se emplea otro. Para llevar a cabo mediciones de este tipo, en todo caso, se emplea una balanza: en un extremo o platillo se coloca el objeto y del otro lado cargas equivalentes a su peso.

    De acuerdo al Sistema Internacional, la medida estándar de peso es el gramo (g), tomado del sistema métrico decimal junto a su extensa lista de múltiplos: decagramo (Dg), hectogramo (Hg) y kilogramo (Kg) que representan 10, 100 y 1000 gramos netos respectivamente. Por debajo, en cambio, hay también submúltiplos conocidos: decigramo (dg), centigramo (cg) y miligramo (mg).   Un gramo se definió alguna vez como la masa de un centímetro cúbico de agua a 3,98 °C de temperatura.

    Unidad de medida

    Por otro lado, dentro de lo que concierne al término medir, encontramos el concepto de unidad de medida. La unidad de medida es el patrón a seguir para realizar la medición. Debe cumplir ciertas condiciones, las cuales son:

    • Una unidad debe de ser universal
    • Una unidad debe ser de fácil reproducción
    • Una unidad debe ser inalterable

    Medición de solidos:

    ·         El área y el volumen de solidos regulares se pueden calcular tomando dimensiones lineales y aplicándolas a fórmulas matemáticas que existen para tal efecto.

    ·         En el caso de polígonos irregulares se utiliza el método que consiste en descomponer el polígono en triángulos, calculando el área de cada uno y sumarlos.

    ·         El volumen de solidos irregulares se pueden obtener por desplazamiento de un recipiente de volumen conocido. El volumen de agua desplazada corresponde al volumen del objeto que se quiere saber.

    ·         El peso de solidos se obtiene utilizando dispositivos como la balanza y el dinamómetro.

    Medición de líquidos:

    Los volúmenes de líquidos pueden determinarse utilizando una gran variedad de utensilios y recipientes que se fabrican actualmente para tal efecto, por ejemplo, los botes de litro empleados en las lecherías, probetas graduadas, pipetas, matraces, vasos de precipitados, etc.

    Medición de gases:

    Los gases deben ser medidos en recipientes cerrados. Su peso varía de acuerdo con la presión que se ejerza sobre el gas y el volumen no puede ser constante por su capacidad de expansión.

    Instrumentos de medición

    Para medir longitud: Cinta métrica. Regla graduada. Calibre. vernier. micrómetro. reloj comparador. interferómetro. odómetro.



    Proyecto (Aulico/Comunitario). ¿Cómo afecta la contaminación atmosférica a nuestro cerebro y a otros órganos?

     https://www.insp.mx/images/stories/INSP/Docs/cts/101208_cs1.pdf PDA. • Indaga situaciones problemáticas relacionadas con la degradación y c...